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ABSTRACT  
  
Reports of calibration typically provide total combined uncertainties at each individual calibration point 
with no information describing the correlation among those uncertainties.  This affects the ability of the 
user of the report of calibration to make an accurate determination of propagated uncertainty values. 
Although covariance is known to affect propagated uncertainties, in those cases where there is insufficient 
information to evaluate the covariance it is generally taken to be zero even when the assumption is unlikely 
to be true.  When correlation coefficients are allowed to vary from zero, the resulting shape of the 
propagated uncertainty curve varies depending on the specific combination of correlation coefficient 
values.  When combinations of correlation coefficients are chosen at random a wide range of propagated 
uncertainty curves are obtained. This type of Monte Carlo simulation is not intended to recreate the 
physical insight withheld by the provider of the report of calibration however it does demonstrate the 
magnitude of the problem faced by the user of the calibration certificate. In particular the paper discusses 
the impact that the absence of correlation coefficient information has on the propagation of uncertainty 
curves for an Au/Pt thermocouple calibration. Furthermore this paper discusses the possibility of a 
maximum likelihood estimator for propagation of uncertainty curves where information about the degree of 
correlation among uncertainties is not provided.  The simulations show that uncertainty in the degree of 
correlation between the variances of calibration points may have a demonstrably significant impact on the 
overall uncertainty of the calibration.  
  
  
1. INTRODUCTION  
  
The calibration of a temperature sensor generally requires measuring the sensor at known 
temperatures and the fitting of measured data to an applicable function used to interpolate 
between the measured datum points.  SPRT calibration data are fit to the functions 
described by the ITS-90, thermocouple calibration data may be fit to functions such as 
those described in [1] and [2], and similarly there are curves which apply to PRTs and 
thermistors.   
  
The true values of the calibration data are unknown quantities, however the range of 
values in which the true value is believed to be contained is quantified by a standard 
deviation-like quantity referred to as a standard uncertainty. Uncertainties are used to 
describe the state of mind of the metrologist and to reflect the knowledge of the 
metrologist regarding the dispersion of values represented by a particular measurement.  
Uncertainties in the calibration data result in uncertainty in the interpolation function fit 
to the calibration data.  This effect is called the propagation of uncertainty.    
  
Just as there is a curve which interpolates between measured values, there is also a curve 
which interpolates between the associated uncertainties of the measured values.  This 
curve is defined in part by the variance-covariance matrix of the uncertainties of the 
measured quantities.  The diagonal elements of this matrix are the variances (the squares 
of the standard uncertainties) of each measured value.  The rest of the matrix is filled in 



by the covariance of each uncertainty (i.e. two unique standard uncertainties multiplied 
by their associated correlation coefficient.)  The shape of the propagation of uncertainty 
curve and therefore the uncertainties assigned to the interpolated calibration values 
depend on our knowledge of the correlation between individual uncertainties.  
Unfortunately most calibration certificates provide only the k=2 uncertainties with no 
information regarding the degree of correlation among those uncertainties.  In this 
situation only the diagonal elements of the variance-covariance matrix are known.  This 
lack of knowledge implies an additional uncertainty that deserves evaluation and leads to 
a dispersion of possible curves to choose from.  Therefore it is desirable to choose a 
propagation of uncertainty curve that represents an unbiased maximum likelihood 
estimate of the propagated uncertainty.  
  
2.     EXAMPLES OF CORRELATED UNCERTAINTIES  
  
Metrologists preparing reports of calibration may have access to much useful information 
for evaluating covariance.  Take for example the calibration of an Au/Pt thermocouple. 
Uncertainty components that may be correlated between calibration points are indicated 
in Table 1.  
  
Table 1: Example of some Type B Thermocouple Uncertainties and possible subjective degrees of correlation  
  

Uncertainties for Thermocouple Calibration at Individual Fixed 
Points  

Degree of Correlation With Other Fixed 
Points  

Uncertainty in sealed cell fixed point value (reference cell 
certification)  

Weak Correlation  

Uncertainty in fixed point value (non-ideal plateau)  Weak Correlation  
Uncertainty in ice bath system  Strong Correlation  

Uncertainty in hydrostatic head correction  Uncorrelated  
Uncertainty due to non-ideal immersion profile  Uncorrelated  
Uncertainty due to inhomogeneity (estimated)  Strong Correlation  

Uncertainty due to low thermal switch thermal EMF   Strong Correlation  
Uncertainty due to sensitive DVM long term stability    Strong Correlation  

Uncertainty due to sensitive DVM calibration    Weak Correlation  

 
  
It is easy to see that uncertainties in the ice bath would be correlated if the same ice bath 
was common to each point of the calibration and the same can be said for the low thermal 
switch.  Uncertainties due to inhomogeneity are believed to be correlated between fixed 
points based on data reported in [3].  However it is difficult to directly observe the 
covariance in practice. Yet it is possible to make judgments about the degree of 
correlation qualitatively and a metrologist may be able to put upper and lower bounds on 
the percentage of variation at one temperature that is explainable by variation at another.  
The R-square statistic tells us the percentage of variation in the dependent variable that is 
attributable to variation in the independent variable.  The square root of the R-square 
statistic is the correlation coefficient.   If we could estimate for example that variation in 
the measured voltage at the Tin point due to the ice bath was 90% explainable by the 
variation in the measured voltage at the Zinc point due to the ice bath then we could 
estimate that the correlation coefficient would be the square root of 0.90, which is 0.95.  
A similar procedure could be used to put upper and lower bounds on the correlation 



coefficients.  One way of synthesizing this information into correlation coefficients for 
the total combined uncertainties would be through a simulation exercise.  A Monte Carlo 
simulation could be used to incorporate the physical insight of the metrologist regarding 
the individual uncertainty components into an estimate of the correlation coefficients of 
the total combined uncertainties.  An example of a covariance matrix in symbolic form is:  

  
             (1)  
  
 
 
 
 

 
Clearly, the metrologist providing the report of calibration has the best information 
regarding correlated uncertainties and is therefore in the best position to estimate 
propagated uncertainties for his client.  A method for doing so is provided below. 
 
3. MATHEMATICS OF UNCERTAINTY PROPAGATION  
  
The equation referred to by [4] as the law of propagation of uncertainty is based on a 
first-order Taylor series expansion of the equation:  

 
),...,,( 21 NXXXfY =                      (2) 

 
 Y is the observed output and the NX  are inputs that may or may not be observed.  
Solutions to the first-order Taylor series can be obtained directly, by numerical methods, 
or by a method recently described using Lagrange polynomials [5].  However it is also 
possible using matrix methods to solve for the propagation of uncertainty curves directly 
without the use of a first-order Taylor series approximation.  This turns out to be 
computationally more efficient and demonstrably equivalent to the other methods.  
Furthermore the author believes that matrix methods provide more insight into the 
relationship between covariance and the propagation of uncertainty and therefore it is the 
preferred method for this paper.  Since the author is unaware of references to this 
particular method in the literature a brief explanation is provided.  
  
If the argument of ),...,,( 21 NXXXf   is rewritten as the vector X   then Equation (2) 
becomes:   
  

XbY =              (3)  
 
Now the vector b  represents the calibration coefficients and the vector X   represents the 
calibration data.  If we want to predict what the interpolated mean response Ŷ  would be 
to some other set of inputs hX  then we can write the relationship as follows:  

  
bXY h=ˆ             (4)  

  



If Y is a random vector with expected variance-covariance matrix 
}}]{}][{{[}{2 TYEYYEYEY −−=σ  and Equation (4) defines the interpolated response 

Ŷ  for any given set of inputs hX , it can easily be shown that:  
  

}}{{}ˆ{ 22 T
hh XbXEY σσ =           (5)  

  
where the solution to Equation (3) is YXb 1−=  and leads to the equation 

})}({{]{ 1212 TXYXEb −−= σσ .   By combining this result with Equation (5) we obtain:  
  

})}({{}ˆ{
1212 T

hh XXYXXEY
−−= σσ      (6)  

  
The propagated uncertainties of the response Ŷ  for a given input hX  are the diagonal 

elements of the variance-covariance matrix }ˆ{2 Yσ .  In contrast, the diagonal elements of 
the variance-covariance matrix }{2 Yσ are values estimated by a metrologist through the 
usual process of uncertainty analysis. They are simply the squares of the standard 
uncertainties associated with the vector Y. The off-diagonal elements are the covariance 
and their estimation requires knowledge about the degree of correlation between the 
uncertainties along the diagonal of the matrix. The covariance is defined:  
  

),()(),(),( jijiji xxrxxxx σσσ =         (7)  
  
where ),( ji xxr  is the correlation coefficient.    
  
The solution to the over-determined case is similarly derived by choosing the appropriate 
solution to Equation (3).  Equation (7) is where this approach normally comes to a halt 
for the user of a calibration certificate because ),( ji xxr  usually is unknown.  Sometimes 
it is estimated as having a value of one.  At other times the metrologist uses his “best 
judgment” and ignores correlation. However, frequently the case is that the user of the 
report knows the true value is probably somewhere between the two extremes but does 
not know how to evaluate it.    
  
4. MONTE CARLO ANALYSIS  
  
Monte Carlo analysis is a statistical simulation method with a wide variety of 
applications.  By representing a problem in terms of probability distribution functions 
(rather than differential equations) it is possible to draw out numeric solutions to very 
difficult problems that would have been near impossible to solve with traditional 
methods.   
  
Recall that one suggested method of dealing with covariance is to treat propagated 
uncertainty as if covariance was zero.  In the case of the Au/Pt thermocouple calibration 
described above this is unlikely to be the expected value of the covariance. The question 
arises then, “Is it likely that setting covariance to zero will result in the most useful 



description of propagated uncertainty?”   
 
When no information is provided in the report of calibration about the values or likely 
distributions of the correlation coefficients then it seems reasonable to model the 
dispersion of possible values for the correlation coefficients with a rectangular 
distribution.  In the first case considered, nothing is left off the table.  The range of all 
possible values for correlation coefficients is by definition -1 to 1.  However in the 
second case it is stated as an opinion that depending on the facts available about the 
calibration it might be possible to narrow the likely range of potential correlation 
coefficients to between 0 and 1.  Graphical results of both cases are shown in the figures 
below. 
 
Uncertainties appropriate for an Au/Pt thermocouple calibration by fixed point were 
assumed in this simulation. At Sn, Zn, Al and Ag the k=2 values were taken to be 16.8, 
15.1, 17.0 and 19.6 mK respectively. By drawing combinations of correlation coefficients 
from a random set of data, 18,316 curves were generated in one case and 20,000 curves 
were generated in another representing potential propagated uncertainty curves for the 
assumed uncertainties.  The first case assumed that correlation coefficients could vary 
between -1 and 1 and the second case assumed only positive correlation coefficients. The 
correlation coefficient matrices were symmetric with the diagonal set equal to one.  As a 
normalization condition the matrices were required to be positive definite [7] by the 
following method.  Each primary submatrix was tested for a positive determinant to 
ensure that all eigenvalues would also be positive. A deviation function of the form 

2)( tbtatf ×+×=  was chosen and the over-determined form of equation (6) was used to 
generate the curves. The resulting output was divided into quartiles.  
 
The environment used to conduct the analysis was a system for statistical computation 
and graphics called R [8].  The algorithm used for generating the uniformly distributed 
random numbers needed for the simulation was the Mersenne Twister [9] which has a 
period of 219937-1.  
  
5. RESULTS  
  
Figure 1 below displays the results of the Monte Carlo Simulation in graphical form. The 
dispersion of values generated was divided into quartiles as indicated by the solid lines in 
Figure 1.  The median value is indicated by the solid line in the center of the curve and 
the maximum and minimum values obtained at each temperature are indicated by the 
outer solid lines.  Additionally three other curves are shown.  The solid circles represent 
the special case where all uncertainties approach 100% correlation between calibration 
points.  The empty circles represent another special case where none of the uncertainties 
are correlated at any of the fixed points.  Finally there is a third curve indicated by stars 
which was calculated as the average of the two curves above which had all correlation 
coefficients set effectively to one for the correlated case or to zero for the uncorrelated 
case.  
  
  



  
Figure1:  The range of propagation of uncertainty curves was determined through a Monte Carlo investigation utilizing 
18,316 simulations.  The simulated curves were produced by choosing covariance matrices that represented random 
degrees of correlation between calibration points.  Correlation coefficients were uniformly distributed between -1 and 
1. Correlation coefficient matrices were symmetric, invertible and accepted if and only if they were positive definite 
matrices. For this simulation an over-determined quadratic deviation function with two degrees of freedom was chosen.    
  
It is interesting to note that in Figure 1 where correlation coefficients were allowed to 
vary between -1 and 1 that the uncorrelated case (rij=0 when i≠j else rij=1) was a fairly 
useful predictor of the median of the distribution.  On the other hand in Figure 2 the 
average of the correlated and uncorrelated curves was a better approximation to the curve 
representing the median of all the simulations and may present the easiest method of 
calculating a maximum likelihood estimate curve for the propagation of uncertainty when 
correlations are expected to be positive.  If this turns out to be true in other scenarios then 
further research should try to determine whether an averaging technique would also be 
useful when the upper and lower bound on the correlation coefficients are other than 0 
and 1.   
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Figure2:  The range of propagation of uncertainty curves was determined through a Monte Carlo investigation utilizing 
20,000 simulations.  The simulated curves were produced by choosing covariance matrices that represented random 
degrees of correlation between calibration points.  Correlation coefficients were uniformly distributed between 0 and 1. 
Correlation coefficient matrices were symmetric, invertible and accepted if and only if they were positive definite 
matrices. For this simulation an over-determined quadratic deviation function with two degrees of freedom was chosen.    
 
 When negative correlations are believed to be unlikely it appears that the propagation of 
uncertainty curve will be misrepresented by an uncorrelated determination.  However if 
no information is present regarding correlation or if it is believed to be equally likely to 
be positive as it is to be negative then no evidence has been presented which contradicts 
the validity of assuming covariance is equal to zero. 
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